The Structure of Gallium Phosphate Glasses by High-energy X-ray Diffraction

U. Hoppe, D. Ilieva^a, and J. Neuefeind^{b,*}

Universität Rostock, Fachbereich Physik, D-18051 Rostock

- ^a Institute of Physical Chemistry, Bulgarian Acad. of Sciences, Sofia 1113, Bulgaria
- b Hamburger Syncrotronstrahlungslabor HASYLAB am Deutschen Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg
- * Present address: Argonne National Laboratory, Chemistry Division, 9700 S Cass Ave, Argonne 60439, USA

Reprint requests to Dr. U. H.; Fax: +49 381 4981726, E-mail: Hoppe@physik1.uni-rostock.de

Z. Naturforsch. **57 a,** 709–715 (2002); received May 8, 2002

X-ray diffraction experiments are used to obtain short-range order information of gallium phosphate glasses of meta- and pyrophosphate compositions. Parameters of the first-neighbor peaks, such as coordination numbers and distances, are obtained. A strong decrease of the Ga-O coordination number from 6.0 ± 0.2 to 4.6 ± 0.2 upon Ga_2O_3 addition is found, which is accompanied by a shortening of the Ga-O distances. Only GaO_6 octahedra exist at the metaphosphate composition. Close to the pyrophosphate composition, the majority of Ga atoms occupies already tetrahedral sites. The Ga-O coordination number behaves equivalent with the ratio $M_{\text{TO}} = n(\text{O}_{\text{T}})/n(\text{Ga})$, thus, with the number $n(\text{O}_{\text{T}})$ of terminal oxygen atoms (O_{T}) in phosphorus- O_{T} bonds which are available for the coordination of each Ga atom. Thus, P-O_T-Ga bridges are formed for all O_{T} atoms. The GaO_n polyhedra neither share O_{T} atoms nor form Ga-O-Ga bridges. With increasing fraction of GaO_4 tetrahedra and decreasing lengths of the phosphate chains the network expands.

Key words: X-ray Scattering, Short-range Order, Phosphate Glasses.